Skip to content
# kaefa kwangwoon automated exploratory factor analysis for improving research capability to identify unexplained factor structure with complexly cross-classified multilevel structured data in R environment
R
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
R
man
revdep
vignettes
.Rbuildignore
.gitattributes
.gitignore
.travis.yml
CONDUCT.md
DESCRIPTION
LICENSE
NAMESPACE
NEWS.md
README.Rmd
README.md
appveyor.yml
codecov.yml
cran-comments.md
kaefa.Rproj

README.md

kaefa

The goal of kaefa is to improving research capability to identify unexplained factor structure with complexly cross-classified multilevel structured data in R environment with automated exploratory factor analysis (aefa) framework

Installation

You can install kaefa from github with:

# install.packages("devtools")
devtools::install_github("seonghobae/kaefa")
#> Downloading GitHub repo seonghobae/kaefa@master
#> from URL https://api.github.com/repos/seonghobae/kaefa/zipball/master
#> Installing kaefa
#> '/opt/microsoft/ropen/3.4.1/lib64/R/bin/R' --no-site-file --no-environ  \
#>   --no-save --no-restore --quiet CMD INSTALL  \
#>   '/tmp/RtmpUXmdqg/devtools5ff85447ed3c/seonghobae-kaefa-5452ca4'  \
#>   --library='/home/development/kaefa/packrat/lib/x86_64-pc-linux-gnu/3.4.1'  \
#>   --install-tests
#> 

Example

This is a basic example which shows you how to solve a common problem:

## basic example code
library('kaefa')
mod1 <- kaefa::aefa(mirt::Science)
#>      item        Zh     S_X2 df.S_X2    p.S_X2    PV_Q1 df.PV_Q1   p.PV_Q1
#> 1 Comfort 0.8257384 4.437619       6 0.6176746 11.54161 10.76667 0.3795823
#> 2    Work 2.0027930 8.863065       9 0.4500095 20.14887 17.00000 0.2666858
#> 3  Future 5.3042086 7.536471       8 0.4800050 13.22452 10.43333 0.2396807
#> 4 Benefit 1.9453938 9.971430      11 0.5329589 19.25101 17.43333 0.3409037
mod1
#> $estModelTrials
#> $estModelTrials[[1]]
#> 
#> Call:
#> mirt::mirt(data = data, model = i, itemtype = j, SE = T, method = "MHRM", 
#>     calcNull = T, key = key, GenRandomPars = GenRandomPars, accelerate = accelerate, 
#>     technical = list(NCYCLES = NCYCLES, BURNIN = BURNIN, SEMCYCLES = SEMCYCLES, 
#>         symmetric = symmetric))
#> 
#> Full-information item factor analysis with 1 factor(s).
#> Converged within 0.001 tolerance after 113 MHRM iterations.
#> mirt version: 1.25.6 
#> M-step optimizer: NR1 
#> 
#> Information matrix estimated with method: MHRM
#> Condition number of information matrix = 112.5461
#> Second-order test: model is a possible local maximum
#> 
#> Log-likelihood = -1608.696, SE = 0.022
#> Estimated parameters: 16 
#> AIC = 3249.392; AICc = 3250.843
#> BIC = 3312.933; SABIC = 3262.165
#> G2 (239) = 213.14, p = 0.8844
#> RMSEA = 0, CFI = 1, TLI = 1.196
#> 
#> $itemFitTrials
#> $itemFitTrials[[1]]
#>      item        Zh     S_X2 df.S_X2    p.S_X2    PV_Q1 df.PV_Q1   p.PV_Q1
#> 1 Comfort 0.8257384 4.437619       6 0.6176746 11.54161 10.76667 0.3795823
#> 2    Work 2.0027930 8.863065       9 0.4500095 20.14887 17.00000 0.2666858
#> 3  Future 5.3042086 7.536471       8 0.4800050 13.22452 10.43333 0.2396807
#> 4 Benefit 1.9453938 9.971430      11 0.5329589 19.25101 17.43333 0.3409037

software quality information

ubuntu and mac environment

Travis-CI Build Status

windows environment

AppVeyor Build Status

Contributor Code of Conduct

You can’t perform that action at this time.